

1	The grain size(s) of Black Hills Quartzite deformed in the dislocation creep
2	regime.
3	
4	Renée Heilbronner ^{1),2)} and Rüdiger Kilian ¹⁾
5	
6	¹⁾ Geological Institute, Basel University, Bernoullistrasse 32, CH_4056 Basel,
7	Switzerland
8	²⁾ Institutt for geovitenskap, UiT Norges arktiske universitet, Dramsveien 201, N-
9	9037 Tromsø, Norway
10	
11	
12	Dedication
13	
14	This contribution is dedicated to Jan Tullis whose superb work on experimental
15	rock deformation and microstructure analysis continues to be an inspiration to us all.
16	
17	
18	Abstract
19	
20	A number of general shear experiments on Black Hills Quartzite (BHQ) in the
21	dislocation creep regime, 5 of which have been analyzed previously using the CIP
22	method (Heilbronner & Tullis, 2002 and 2006), are (re-)examined using the higher
23	spatial and orientational resolution of EBSD. Segmentations based on c-axis orientation
24	and on full crystallographic orientations are compared. Texture domains of preferred
25	c-axis orientation are extracted and analyzed separately. Subdomains are recognized
26	and their shape and size is related the kinematic framework and the original grains in
27	the BHQ. Grain size analysis using a segmentation based on c-axis orientations is
28	carried out for all, high and low strain samples of all regimes, and for a number of
29	texture domains. The results are compared to the recrystallized quartz piezometer of
30	Stipp & Tullis (2003), returning consistently higher values for stress or grain size.
31	Possible causes for the discrepancy are texture dependence, grain scale strain, and
32	dependence on the kinematic framework (in axial versus general shear experiments).
33	

34	Keywords:		
35	Recrystallized grain size, quartz piezometer, CIP-EBSD comparison, grain		
36	boundary detection, texture domains		
37			
38	1. Introduction		
39			
40	Black Hills Quartzite (BHQ) has been used extensively in experimental rock		
41	deformation for numerous studies. Coaxial and general shear experiments have been		
42	carried out, for example, to define the dislocation creep regimes of quartz (Hirth &		
43	Tullis, 1992), to derive flow law parameters (Gleason & Tullis ,1995), to determine the		
44	effect of annealing (Heilbronner & Tullis, 2002; Kidder et al., 2016), effect of the		
45	chemical environment on deformation processes (Post et al, 1996; Chernak et al.,		
46	2009), to compare deformation processes to nature (Stipp & Kunze, 2008) or to study		
47	the development of texture and microstructure with strain (Tullis et al., 1973; Tullis,		
48	1977; Dell'Angelo & Tullis, 1989; Gleason et al., 1993; Heilbronner & Tullis, 2006).		
49	BHQ was also used to determine the widely used recrystallized quartz grain size		
50	piezometer of Stipp & Tullis (2003) (Stipp et al., 2006).		
51	Among the microstructure analyses that were performed in those original papers,		
52	grain size was usually determined using CIP misorientation images. However, the CIP		
53	method (= computer-integrated polarization microscopy, details in Heilbronner and		
54	Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial		
55	materials and hence is only capable of detecting grain boundaries between grains that		
56	differ in c-axis orientation.		
57	One of the puzzling results found by Heilbronner & Tullis (2006) was that the		
58	recrystallized grain size seemed to depend on the crystallographic preferred		
59	orientation of the grains within a domain. In other words the grain size seemed to not		
60	only depend on the flow stress but also on the orientation of the c-axis with respect to		
61	the kinematic framework. At the time, no EBSD analysis (electron back scatter		
62	diffraction) was carried out and hence the full crystallographic orientation was not		
63	known. In principle it is therefore possible that some grain boundaries were missed		
64	(between grains with parallel c-axes) and the grain sizes miscalculated.		
65	Orientation tracking and ACF (autocorrelation function) shape analysis of the so-		
66	called 'prism' domains (with c-axes approximately parallel to the structural Y		

- 67 direction) showed that these domains grow or as a function of strain beyond the size of 68 the original BHQ grain size, forming lenticular aggregates that are more elongated and 69 less rotated than the other domains. Together with the extra large grain size, this 70 suggested that they deform at lower stresses than the other domains. 71 In a set of shear experiments on quartz gouge at the brittle-viscous transition 72 (Richter et al., 2016), flow stresses could be calibrated very accurately and EBSD was 73 used to measure the recrystallized grain size. In order to compare the recrystallized 74 grain size of crushed quartz crystals to that of solid quartzite (BHQ), the samples of the 75 2006 experiments (deformed in the dislocation creep regimes 1, 2 and 3) are re-76 measured, using EBSD data sets to determine the grain size, but also, more generally, to 77 repeat, refine and expand the microstructure and texture analysis of Heilbronner & Tullis (2006). In this study the focus is on the recrystallized grain size with the aim (a) 78 79 of comparing CIP- and EBSD derived grain size measurements, (b) of confirming or 80 rejecting the notion that the recrystallized grain size depends on texture, and (c) of 81 checking if the stress dependence of the recrystallized grain size falls on the quartz
- 82 piezometer of Stipp and Tullis (2003).

- 83 2. Selected deformation experiments
- 84 85

2.1. Deformation experiments

86

87 The rock deformation experiments that produced the samples analyzed in this 88 study are described in Heilbronner & Tullis (2006). A solid medium confining pressure 89 apparatus is used, and approximately 1.25 mm thick slices of Black Hills quartzite 90 (BHQ) were placed at an angle of 45° between forcing blocks as shown in Figure 1a. 91 The experiments were run with a confining pressure of approximately 1.5 GPa, and an 92 average shear strain rate of approximately $2 \cdot 10^{-5}$ s⁻¹ (see Table 1 for details of 93 experimental conditions). Temperatures were 850°C, 875°C, and 915°C, for regime 1, 2, 94 and 3 respectively, and 0.17 wt% H₂O was added for one of the regime 2 and all of the 95 regime 3 samples. For each regime, one sample was deformed to a relatively low finite 96 shear strain (2.7 < γ < 4.3) and one or two to a relatively high finite shear strain (5.8 < γ 97 < 7.2). Note, that shear strain usually reported in the experiments refers to an apparent 98 shear strain, which is calculated as simple shear with respect to the final thickness (thf) 99 of the sample ($\gamma = d/thf$) disregarding the pure shear component associated with the 100 thinning of the sample. This apparent shear strain is numerically larger than the true 101 shear strain, which is not easy to calculate for a thinning shear zone. To correct for the 102 flattening, often the effective shear strain ($\gamma_{effective} = (d/th0)^{(th0/thf)}$) is used, assuming 103 homogeneous general shear (see Table 1) 104 For this study, the force-displacement records are converted to stress strain 105 curves using a modified version of the rigS program (Richter et al., 2016), taking into 106 consideration the decreasing overlap of the forcing blocks (ACF correction) and the 107 increasing confining pressure resulting from the compression of the confining medium 108 inside the vessel (32 - 33 MPa per mm piston advance depending on temperature). The 109 friction correction (as described in Pec et al. 2015) and the stress correction as 110 proposed by Holyoke & Kronenberg (2010) are omitted. Thinning of the sample is 111 assumed to be linear with the axial advancement of the forcing block (see Figure 2, Pec 112 et al., 2016). For every time step, the shear strain is calculated as the total 113 displacement of the forcing block, at time t, along the shear zone divided by the 114 instantaneous thickness of the shear zone, at time t. The resulting stress strain curves 115 reproduce the curves that were originally published (Figure 1b). This is not surprising

- 116 because (a) the shear strain is calculated in exactly the same way and (b) the effect of 117 the confining pressure correction ('salt correction') is to 'weaken' the sample and thus 118 'replaces' the effect of the original viscosity correction. 119 120 121 122 2.2. EBSD data acquisition 123 124 Of each of the deformed samples, a polished thin section of approximately $20 \,\mu m$ 125 thickness had been prepared, suitable for the analysis by computer-integrated 126 polarization microscopy (CIP), which was carried out in the previous studies 127 (Heilbronner & Tullis, 2002 and 2006). (The CIP method was introduced by Panozzo 128 Heilbronner & Pauli, 1993, and is described in detail in Heilbronner & Barrett, 2014). 129 The sections are then polished using a Struers Tegramin-30® equipment (3 min, 10 N), 130 with their MD Chem® neopren pad and OP-U® polishing liquid. 131 EBSD data acquisitian is carried out using a ZEISS Merlin VP Compact® (ZEISS 132 SmartSEM® operating software), a Nordlys Nano Camera operated with Oxford 133 AZtec® software. Using the settings listed in Table 2, maps are acquired at 1, 0.5 and 134 0.25 µm step size. The data files are exported and the open source MTEX Toolbox 135 (Hielscher & Schaeben, 2008; https://mtex-toolbox.github.io/) is used for further 136 processing and analysis. If necessary, maps are rotated to have the forcing block in a 137 horizontal direction and flipped such that the shear sense is sinistral for all maps, an 138 example is shown in Figure 2a. In order to enable high resolution CIP analysis of the 139 EBSD input, c-axis azimuth and inclination maps are calculated and exported as TIFF 140 images (Figure 2b). Further texture analysis and segmentation is carried out along two 141 lines: (1) using MTEX and the full texture information (2) using CIP (including 142 ImageSXM and/or Image]), making use only of the c-axis texture. Note, however, that 143 the input data for both comes from EBSD maps. Details of methods and the results of 144 the EBSD analysis are described in Kilian & Heilbronner (this volume), while the 145 mostly c-axis based CIP analyses are presented in the following. 146 147
- 148

149	3.	Image analysis	
150			
151	Image	processing, pre-processing and analysis, is carried out using ImageSXM	
152	(http://www.liv.ac.uk/~sdb/ImageSXM/), as described in Heilbronner & Barrett		
153	(2014). Alte	rnatively, and complementary to Image SXM, the open source software,	
154	ImageJ (http	o://rsb.info.nih.gov/ij) distributed over the Fiji platform (http:// fiji.sc/Fiji)	
155	is used.		
156			
157	3.1.	Pre-processing	
158			
159	The m	ain task during pre-processing is to remove noise. Two types of noise and	
160	their source	s need to be distinguished. One is salt-and-pepper noise that shows up as	
161	individual p	ixels with values outside the range of value of its neighbours, the second is	
162	statistical no	bise resulting from the imaging and indexing processes. Examples of the	
163	first type ar	e non-indexed or misindexed pixels, the second kind is caused by	
164	fluctuations	of orientation measurements typically with misorientation angles < 1° for	
165	conventiona	ll EBSD. Using ImageSXM, the c-axis azimuth (AZI) and the c-axis	
166	inclination (INC) image are saved into the red and the green channel of an RGB image,	
167	the blue cha	nnel is filled with the bitmap of the non-indexed pixels (MASK). Together	
168	the image a	opears in red-yellow-green colours as shown in Figure 23.1 of Heilbronner	
169	& Barrett (2	014). In one case, 1a-w940, the image is cropped to a region with	
170	acceptable i	ndexing (see Table 2 and 3). Misindexed pixels are removed by a process	
171	called 'Remo	ove Outliers' (ImageJ) which is applied once for bright and once for dark	
172	outliers (usi	ng a threshold of 1 and a radius of 1 in both cases). By this process,	
173	misindexed	and non-indexed pixels are replaced by (AZI / INC) values calculated from	
174	the (AZI / IN	IC) values of the neighbouring pixels. After this type of noise cleaning, the	
175	percentage	of pixels with a valid c-axis directions is considerably increased from an	
176	average of 8	3% to 92% (see Table 3).	
177	The fil	tered RGB image are separated again, the three individual channels now	
178	representin	g the input images for the CIP software (http:// earth.unibas.ch/micro).	
179	For every El	BSD map, c-axis orientation images (COI), orientation gradient images	
180	(OGI) and m	isorientation images (MOI) are calculated, as shown in Figure 2b. The COIs	
181	can be view	ed with different color-look-up tables (CLUT) depending on the desired	

feature to be visualized. Using the Spectrum CLUT allows an easy comparison with		
published COIs obtained by light-optical methods. A so-called AZI CLUT is used to		
highlight changes of azimuth irrespective of inclination (see section on subdomains).		
Note that in the context of CIP, the term 'orientation' refers to 'c-axis orientation', (a		
'direction' in terms of full texture), and 'misorientation' refers to the angle between a		
given c-axis and a reference direction (see Heilbronner & Barret, 2014, chap.23). MOIs		
show the angle between the c-axis orientations at each pixel and an internal (defined		
on pole figure) or external (i.e., structural) reference direction, OGIs show the average		
angular difference of the c-axis orientation of each pixel with respect to those of its (4		
or 8) neighbours (Figure 2b). Note, the maximum value for an angle between two c-		
axes is 90°.		
3.2. Segmentation		
In order to check if grain boundary maps derived on the basis of the full texture		
are identical to those obtained through image analysis of c-axis misorientation images		
(as used for the grain size analyses published by Heilbronner & Tullis, 2002, 2006),		
two segmentations are performed for every sample, one using the full crystallographic		
orientation of each pixel, a so-called EBSD segmentation producing EBSD boundaries,		
and one using c-axis azimuth and inclination images a so-called CIP segmentation		
producing CIP boundaries, with both types using EBSD mappings as input. An example		
of such a comparative segmentation is shown in Figure 3. Both methods are some form		
of image analysis, the EBSD approach proceeding analogous to region growing		
algorithms, the CIP approach using edge detection and structural filtering.		
3.2.1. Procedure to obtain EBSD boundaries:		
Segmentation of grains from EBSD data can be accomplished based on a		
misorientation angle threshold assuming that grains are objects enclosed by		
boundaries which fulfill the segmentation criterion at every point along the boundary		
(here, a minimum angle of misorientation of 10° is chosen). In MTEX, the		
measurement points do not have to be located on a regular grid, although they usually		
are, nor do they have to be in direct contact with one another. It is possible to		
reconstruct grains which are dissected by arrays of non-indexed pixels (e.g. scratches)		

215	as long as the misorientation angle between the disconnected pieces is below a given
216	threshold and spatial conditions are fulfilled (Bachmann et al, 2011). It is also possible
217	to attribute fractions of non-indexed pixels to the closest grain, i.e., to an indexed area,
218	based on certain textural or spatial criteria. This procedure, in the following called
219	grain completion, generates grain boundaries which outline 'completed' grains, i.e.,
220	grains consisting of indexed pixels and 'incorporated' areas. The degree of grain
221	completion has to be adapted to the individual image quality, therefore, the process of
222	grain completion needs to be supervised. The most conservative approach is to use no
223	grain completion at all, at the other end of the spectrum is the total completion which
224	leave no pixel unassigned. The resulting grain boundaries for segmentation based on
225	total completion are shown in Figure 3a. Grain boundaries obtained without grain
226	completion are shown in Figure 3b. In contrast to the grain boundary bitmaps obtained
227	by image analysis such as the CIP method (Figure 3c), EBSD grain boundaries have
228	zero thickness and in the case of grain completion, the grain sizes need not to be
229	integer multiples of the step size.
230	
231	3.2.2. Procedure to obtain CIP boundaries:
232	Segmentation is carried out using Image SXM and the Lazy grain boundaries
233	(LGB) macro (Heilbronner 2000, Heilbronner & Barrett, 2014). The input consists of 8
234	c-axis misorientation images (MOI), calculated with respect to 4 external reference
235	directions (X, Y, Z and parallel to the applied principal stress, at 45° between X and Y,
236	see sample coordinates, Figure 2) and 4 internal reference directions corresponding to
237	the 4 most prominent maxima in the pole figure. The MOIs are combined to a stack and
238	resized by a factor of 2 (or 4) using nearest neighbour interpolation (NN) to preserve
239	the calculated pixel values and to retain sharp boundaries.
240	The sequence of stens necessary to complete a segmentation are listed in Table 3
241	The sequence of steps necessary to complete a segmentation are instead in Table 5
271	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by
242	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by histogram equalization [e]. Edge detection (Sobel operator) is preformed [o], and the 8
241 242 243	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by histogram equalization [e]. Edge detection (Sobel operator) is preformed [o], and the 8 gradient images are OR added [z], keeping the maximum value (of the 8 gradient
242 243 244	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by histogram equalization [e]. Edge detection (Sobel operator) is preformed [o], and the 8 gradient images are OR added [z], keeping the maximum value (of the 8 gradient images) at each pixel. The resulting image is thresholded at a grey value between 25
241 242 243 244 245	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by histogram equalization [e]. Edge detection (Sobel operator) is preformed [o], and the 8 gradient images are OR added [z], keeping the maximum value (of the 8 gradient images) at each pixel. The resulting image is thresholded at a grey value between 25 and 50 according to visual impression, values that correspond to approximately 1.2 -
242 243 244 245 246	in the form of LGB keystrokes. Typically the contrast of each slice is optimized by histogram equalization [e]. Edge detection (Sobel operator) is preformed [o], and the 8 gradient images are OR added [z], keeping the maximum value (of the 8 gradient images) at each pixel. The resulting image is thresholded at a grey value between 25 and 50 according to visual impression, values that correspond to approximately 1.2 - 2.5° (c-axis misorientation). One or two rounds of thickening [t], skeletonizing [j] and

248	the noise caused by misindexing, additional median filtering needs to be applied,		
249	during the segmentation, to the slices of the stack [u] or to the combined image [m].		
250	To obtain the final grain map, the grain boundaries are thickened to a width of 2		
251	pixels and the grain boundary map (black lines on white background) is inverted. At		
252	this point, the grain map (black segments) consists of all possible 'grains', including		
253	those that consist of a hole, dirt or a different mineral phase. This is so because grain		
254	boundary detection does not only detect high gradients between indexed pixels of		
255	different c-axis orientation, but also between indexed and non-indexed pixel. Such		
256	'grains' of non-indexed pixels are excluded from future analyses. As will be shown in		
257	the next section, this is accomplished through 'Redirect sampling' and by analyzing the		
258	grain map together with the MASK image (i.e., the map of the indexed pixels). The		
259	resulting grain boundaries are shown in Figure 3c.		
260			
261	3.3. Construction of grain size maps		
262			
263	From the grain maps, grain size maps are derived. To this end, the Lazy Map		
264	Redirect macro (LMR, see Appendix) is employed. In Image SXM, the grain map (black		
265	segments) and the MASK (indexed pixels black, non-indexed white),the grain map is		
266	scaled spatially, the scale being determined by the EBSD step size and the NN		
267	magnification used for segmentation. The LMR macro uses the Analyze function to		
268	determine the area of each segment on the grain map and the corresponding indexing		
269	density on the MASK. From the area, the diameter of the area equivalent circle is		
270	calculated (see Heilbronner & Barrett, 2014, for how to best calculate the correct		
271	diameter of an area). Rejecting areas with an indexing ratio below 75%, the pixels of		
272	every valid grain are assigned a grey value (GV) corresponding to the value of the		
273	diameter. A cut-off value can be selected and the rainbow LUT is used to visualize small		
274	values in blue and values above the cut-off in red (Figure 4). Note that grain size maps		
275	are both scaled in X and Y (spatial coordinates of the image plane), and calibrated in Z		
276	(grey values).		
277	The grain size maps of the deformed and dynamically recrystallized samples of		
278	regime 1, 2 and 3 have been 'dilated', i.e. a ranking filter has been applied to close the		
279	gaps formed by the 'empty' pixels of the grain boundaries.		
280			

281	3.4.	Determination of mean grain size	
282			
283	The 2-	D diameter of each segment is calculated from the cross sectional area (as	
284	mentioned a	above). The number weighted distribution h(d) of area equivalent	
285	diameters is	presented as a histogram, for which the arithmetic mean, the mode, etc.	
286	can be deter	mined. In order to be able to plot the data on the piezometer of Stipp $\&$	
287	Tullis (2003), the root-mean-square (RMS) is calculated. Note that the RMS is biased	
288	towards the	upper end of the distribution (larger grain sizes) and returns a value	
289	greater thar	the arithmetic mean. Because the RMS depends strongly on the tail end of	
290	the distribu	tion, the histogram has to be cropped carefully to the relevant size range if	
291	the RMS is t	o be a meaningful measure of 'the' grain size.	
292			
293	To obt	ain a possible parent distribution of 3-D grains, the program stripstarD	
294	(Fortran sou	arce stripstarD.f and Matlab script stripstar.m, see Suppplementary	
295	Material) is	used (details in Heilbronner & Barrett, 2014). The mode of the volume	
296	weighted hi	stogram of 3-D diameters, v(D), is found by fitting a Gaussian, the mean of	
297	the Gaussia	n representing the mode of v(D) (Figure 5). Note that the mean is centered	
298	about the mode of v(D) and therefore independent of the long tail end of the		
299	distribution. In many instances, volume weighting is considered to be physically more		
300	meaningful	than number-weighting because it is the mass of a certain grain size	
301	fraction that	t matters, not the number of grains in it. All 3-D and 2-D grain sizes	
302	evaluated for this study, i.e., the modal values of v(D) and the RMS of h(d) are listed in		
303	Table 4. In t	he following, the term '3-D mode' will refer to the mode of $v(D)$, and the	
304	term '2-D R	MS' to the RMS of h(d), being measures of 2-D and 3-D grain size	
305	respectively	·	
306			
307	3.5.	Extracting texture components	
308			
309	For the	e following investigation, the concept of a 'texture component' is not based	
310	on the full c	rystallographic information, i.e., defined by all three Euler angles, instead it	
311	refers to asp	pects of c-axis orientation only. Areas within orientations maps with a given	
312	texture com	ponent will be called domains. To construct a domain map, the c-axis	
313	misorientat	ion image (MOI) is used. This image is thresholded at a level corresponding	

314	to the desired opening angle about the reference direction of the MOI (which is defined		
315	on the pole figure), i.e, about the central c-axis orientation of the domain. Each of the		
316	domain maps shown in Figure 6 and c is created by superposing a mask made from the		
317	MOI, thresholded at 15° (for a 30° opening angle), on the c-axis orientation image with		
318	a continuous color coding of 360° of azimuth (AZU CLUT). The CLUT is shown as a		
319	background to the pole figures in Figure 6a.		
320	In the paper by Heilbronner & Tullis (2006), a number of c-axis maxima and		
321	domains are identified. Their names allude to the slip system whose activity was		
322	supposed to give rise to them (e.g. Schmid & Casey, 1986). The 'prism' domain, with c-		
323	axes parallel to the structural Y-direction, indicative of prism <a> slip, the 'basal'		
324	domain, with c-axes on the periphery, slightly rotated from the structural Z direction in		
325	the sense of shear, indicative of basal <a> slip, the 'rhomb' domain, with two		
326	symmetrically disposed c-axis maxima on the inclined girdle, oriented for rhomb <a>		
327	slip, and the ' σ_1 'domain, with a c-axis maximum on the periphery, oriented in the 'hard'		
328	direction, i.e., parallel to the direction of the applied load. Here, the names for the		
329	domains are Y-domain, B-domain, R-domain and σ_1 -domain, respectively (see Figure 6,		
330	inset upper right), but without implicitly assuming that a specific c-axis orientation		
331	implies the activity of a certain slip system .		
332			
333	3.6. Maps of misorientation density		
334			
335	To investigate the conspicuous grain size gradient of the regime 1, 2, 3 samples		
336	shown in Figure 4, the internal misorientation density is determined by a method		
337	described in detail in the companion paper (Kilian & Heilbronner, same volume) and		
338	mapped as shown in Figure 7. Briefly, a higher-order kernel average misorientation		
339	(KAM) is calculated on orientation-noise reduced EBSD data, and for each grain, the		
340	sum of the KAM is divided by the number of measurements, providing the grain		
341	averaged KAM (gKAM). The gKAM represents an estimate for the intragranular		
342	density and the misorientation angle of low angle boundaries.		
343			
344			
345			

346	4.	Results	
347			
348	4.1	Grain size of dynamic recrystallization regimes	
349			
350	The 2-	D grain size distribution is visualized using grain size maps (Figure 4). A	
351	few aspects	in this figure merit attention. Comparing the predominant colours of the	
352	grain size m	aps with this CLUT suggests that the cross sectional areas of most of the	
353	grains of th	e regime 1 samples have diameters of less than 5 μm , those of regime 2 less	
354	than 8 µm a	nd those of regime 3 less than 15 $\mu m.$ In addition, a rather clear grain size	
355	gradient ca	n be recognized for w946.	
356	Expre	ssed in terms of the 3-D mode, the grain size of the starting material	
357	(undeformed BHQ) is 104 μm , which is much larger than the recrystallized grain size		
358	(as shown i	n Figure 5, inset). The recrystallized grain size for the seven samples	
359	deformed in	regime 1, 2, and 3 to high and low total shear strain is shown in Figure 5.	
360	The modal values found for the sample w1092, w946 and w935 shown as grain size		
361	maps in Fig	ure 4 are 4.1 μm , 6.5 μm , and 14.7 μm , respectively, values that coincide	
362	with the vis	ual impressions of <5 μ m, <8 μ m and < 15 μ m. Note that the corresponding	
363	RMS values	3.4 μm , 4.5 μm and 9.4 μm (Table 4a), do not fit the visual impression as	
364	nicely. The	high strain samples are almost completely recrystallized. The same is not	
365	true for the	low strain samples, and accordingly, their distributions v(D) are not strictly	
366	monomoda	l, and rather show quite a number of grains at the larger end of the	
367	histogram.		
368			
369	4.2.	Identification of subdomains	
370			
371	Upon	closer inspection, the pole figures reveal that the maxima of the Y- and B-	
372	texture com	ponents are usually composed of two distinct submaxima. Selecting these	
373	('upper' and	l 'lower') submaxima in a pole figure, two separate orientation images for	
374	the corresp	onding texture component, i.e., two subdomains can be created (Figure 6).	
375	What was o	riginally considered one Y- or one B- domain, is actually composed of two	
376	non-interse	cting spatial domains as evidenced by the different colours which highlight	
377	the distinct	ranges of azimuth of c-axis orientations of each of the subdomains	
378	(compare F	igures 6b and 6c).	

379			
380	4.3. Grain size of domains and subdomains		
381			
382	The grain size analysis for the Y-domain of sample w935 (regime 3) and its		
383	subdomains is shown in Figure 8. The histograms below the maps are obtained by		
384	grouping the grey values (which are calibrated to the 2-D diameter of the grains). The		
385	mean value of the histograms represents the arithmetic mean of the area-weighted size		
386	distribution a(d). This means, for example, that in the case of the Y-domain of w935,		
387	the mean area fraction is occupied by grains of 14.2 μm diameter, i.e., 158 μm^2 cross		
388	sectional area. The mean values of a(d) always lie between the 2-D RMS and the 3-D		
389	mode. Thus, for the same domain, RMS = 9.6 μm < 14.2 μm < 3-D mode = 16.0 μm (see		
390	also Table 4c). The area weighted distribution of diameters is not to be confused with		
391	the frequency distribution of areas, which, for the same domain, has an arithmetic		
392	mean of $247 \mu m^2$ corresponding to a diameter of 17.7 μm .		
393	The grain sizes of the (combined) B- and Y-domains have been calculated for the		
394	high strain samples in regime 1, 2, and 3 (Figure 9). The ratio between the		
395	recrystallized grain size of the Y-domains and the bulk grain size is > 1.00 for sample		
396	w935, ≈ 1.00 for samples w965 and w946, and < 1.00 for sample w1092. Conversely,		
397	the ratio between the recrystallized grain size of the B-domains and the bulk grain size		
398	is > 1.00 for samples w965, w946 and w1092, and < 1.00 only for sample w935 (see		
399	also Table 4c). This point is also taken up in the companion paper (Kilian &		
400	Heilbronner, same volume).		
401			
402	4.4. Grain size and misorientation density		
403			
404	To explore the relation between grain size and the state of deformation (as		
405	indicated by misorientation density) the grain maps are evaluated separately for high		
406	and low gKAM regions (Figure 7). The 3-D modes are determined for the upper and		
407	lower halves of the samples w1092 (regime 1) and w946 (regime 2), and in four strips		
408	of sample w935, results can also be found in Table 4b. Clearly, regions of higher gKAM		
409	have a smaller recrystallized grain size and regions of lower gKAM have a larger		
410	recrystallized grain size. Obviously, non-recrystallized grains also show high gKAM		
411	values but (due to their low frequency) are not considered in this analysis.		

412

413	4.5.	Grain size and flow stress	
414			
415	Finally,	the grain size data are plotted on the piezometer of Stipp & Tullis (2003).	
416	The results a	re presented in two types of plots in Figure 10: in the top row 3-D modes	
417	are used for the diameter, in the bottom row, the corresponding 2-D RMS values are		
418	plotted to fit the piezometer data set. On account of the high volume fraction of		
419	recrystallized grains (\geq 90%), the high strain samples are considered the most reliable		
420	data points and plotted separately (Figure 10a). In view of the grain size gradient		
421	across the sa	mples w1092, w946 and w935 (see Figure 4), both the minimum and	
422	maximum gr	ain sizes are shown, the line fit considers all 6 data points. The picture	
423	does not cha	nge fundamentally, if the low strain samples are included (Figure 10b).	
424	Finally, two s	lightly different line fits are obtained for the recrystallized grain sizes of	
425	the Y- and B-	domains (Figure 10c).	
426			
427			
428			

430	5.	Discussion	
431			
432	5.1	Confirmation of CIP results with EBSD analysis	
433			
434	Proces	ssing and representing the EBSD mapping as c-axis orientation images	
435	(COI), show	s that both methods, EBSD and CIP, coincide down to the limit of optical	
436	resolution o	f polarization microscopy (Figure 11). The maps are very similar, and the	
437	geometry c-	axis pole figures are very similar, differences being due to a number of	
438	circumstand	ces. Firstly, the SEM penetrates a small layer near the surface of the thin	
439	section whe	ereas the CIP method works in transmission. In optical light microscopy,	
440	information from the entire thickness of the thin section contributes to the result, and		
441	even more importantly, grain boundaries appear as a separate phase of isotropic		
442	(dark) material, and thus disturb the analysis of the nearby pixels, especially if the		
443	grain boundaries are orientated at a low angle to the section surface. A second source		
444	for differen	ces between EBSD and CIP are different procedures by which orientations	
445	are calculat	ed from the input, a critical issue being the determination of c-axis	
446	inclinations	in CIP.	
447	The c-	axis pole figures obtained by CIP and EBSD methods also compare very	
448	well (Figure	e 11). It came as a surprise that full texture analysis confirms that the so-	
449	called 'basa	l' and 'prism' maxima of c-axes are actually composed of two distinct	
450	submaxima	. Previously, when doing the CIP analysis, it was always considered a	
451	problem of	not being able to properly calibrate the inclination of the c-axes, if the B-	
452	maximum d	id not appear exactly on the periphery and if the Y-maximum did not	
453	occupy one	position (rather than two) at or near the center of the pole figure (as	
454	shown Figu	re 11 for sample w965). However, the misorientation images (MOI) and	
455	grain size m	aps confirm this very clearly (Figures 6 and 8).	
456			
457	5.2	New insights through EBSD analysis	
458			
459	It is in	teresting to note that the Y-domain and the B-domain are arranged as	
460	layers with	clusters of grains belonging to one or the other sub-maximum in the pole	
461	figure (see,	e.g., Figure 8). Testing the neighbourhood relations between grains of the	
462	sub-maxima	a (using the spatial analysis described in chap. 18 of Heilbronner & Barrett,	

463 2014) revealed that they are not randomly arranged within the layers but rather 464 strongly clustered (Figure 12a). Pole figures with double Y-maxima have been shown repeatedly in a number of publications, however, no particular attention has been 465 466 given to them (see e.g., Manktelow, 1987, Stipp et al., 2002, Mancktelow & 467 Pennacchioni, 2010, Pennacchioni et al., 2010, Law, 2014). 468 In order to determine the shape of texture domains, the autocorrelation function 469 (ACF) is used. Superposed lines on the ACFs (Figure 12b) represent the orientations of 470 the 30% contours. Their trend with respect to the shear direction is 22° and 21° for the upper and lower subdomain, respectively, and 10° for the combined Y-domain. 471 472 Obviously, the shallow trend of the Y-domain is the result of an imbricate arrangement 473 of the more steeply inclined subdomains. On account of the shallow trend of the Y-474 domain, Heilbronner & Tullis (2006) argue, that while all domains deform as particles 475 of higher viscosity in a low viscosity matrix (using the approach by Gay, 1968), yet the 476 'prims' domain is the one with the lowest viscosity ratio (R) of them all, having $R \approx 2$ 477 (where R = μ / μ_0 , μ being the viscosity of the domain and μ_0 the viscosity of the matrix) 478 making it the 'softest' among all domains. 479 In this contribution, however, we prefer not to pursue the approach by Gay 480 because of the shortcomings and errors associated with it. Instead we first calculate an 481 Rf-phi diagram with the aspect ratios and orientations of the Y-subdomains based on a 482 procedure described by Mancktelow (2011) based on Bilby and Kolbuszewski (1977). 483 Next, we calculate the finite strain of the bulk sample assuming homogeneous 484 continuous general shear according to Tikoff & Fossen (1993). And finally we calculate 485 the ACF of the domain and subdomain clusters from which we derive the aspect ratio 486 and orientation (Rf-phi coordinates). Plotting these values into the Rf-phi diagram 487 reveals that, the subdomains plot on the equiviscous curve (R = 1), as does the bulk 488 sample by default, while the full domain plots on a curve for a viscosity ratio >1. 489 Note, that the shear strains of the subdomains remain about 1/3 of are significantly 490 lower ($\gamma \sim 1$) than the strue shear strain for the bulk sample w935 with a ($\gamma \sim 3$) 491 implying that subdomains deform at a lower rate than the bulk sample, while they still 492 are iso-viscous with respect to their neighboring domains. Such a situation however, 493 requires an additional strain producing and accommodating mechanism operative 494 throughout the entire sample, a possible candidate being grain boundary sliding. Grain 495 boundary sliding has been suggested for regime 1 experiments (Stipp & Kunze, 2008;

496 Kidder et al., 2016) however, that it could also contribute to bulk strain in regime 2 and 497 3 was not suspected. 498 Another interesting point to note is the ratio of the apparent shear strain, usually 499 reported as γ in deformation experiments (see Figure 1), to the effective shear strain 500 y effective of \sim 1.6 (see Table 1). When comparing experimental microstructures to 501 natural ones, the question arises which experimental y-value should be used for 502 comparison with the shear strain measured in the field. 503 A number of alternative measures derived from the initial and the final thickness 504 of the shear zone (Gleason & Tullis, 1993) or methods for the incremental calculation 505 of shear strain (Richter et al., 2016) have been proposed. Like the true shear strain and 506 the effective shear strain, all of these measures return smaller values, which may be 507 closer to values that are relevant in nature. Using the apparent shear strain (the 508 highest possible) may be part of the reason why in nature a steady state 509 microstructure and texture appears to be established at much lower strains than in 510 experiments, (see discussion by Pennacchioni et al., 2010). It also means, that care 511 should be taken when using the relation between volume fractions of recrystallized 512 grains and the (so-called) shear strain, as determined from general shear experiments, 513 to estimate the shear strain in nature (Rahl & Skemer, 2016). 514 To assess the size of the subdomains we consider the ACF again. The long 515 diameters of the 30% contours (typically used for size estimates, see Barrett & 516 Heilbronner, 2014, chap. 20) are 59 μ m, 64 μ m and 153 μ m, those of the 20% contours 517 103 μ m, 111 μ m and 356 μ m, again for upper, lower subdomain and combined Y-518 domain, respectively. Both measures indicate that the cluster size of the combined 519 domain is approximately 3x the cluster size of the subdomains. This led Heilbronner & 520 Tullis (2006) to the conclusion that the 'prism' domains could not represent original 521 BHQ grains (of 'prism' orientation) but must have grown by coalescence of 522 preferentially replacing 'harder' 'basal' and ' σ_1 ' grains by 'softer' 'prism' grains through 523 preferred recrystallization and coalescence. - Considering now, that the subdomain 524 clusters have abut the same diameters as the original BHQ grains and that their 525 orientation is compatible with strain, another interpretation is possible: subdomain 526 clusters could indeed be the strained 'ghosts' of the original BHQ grains, with strain by 527 a crystal plastic mechanism bringing their c-axes close to a common Y- direction but 528 never into parallelism. The co-existence of such intercalated subdomains, in particular,

- the a-axis alignment and low 'transparency' (simplified m'-factor) at their boundaries
 is investigated in more detail in the companion paper (Kilian & Heilbronner, this
- 531 volume).

532 The misorientation density as measured by the gKAM can be interpreted as a 533 indicators of deformation intensity - in the case of subgrain rotation recrystallization. 534 Thus, highly deformed (recrystallized) grains should have high gKAM values. However, 535 whether or not a grain is highly deformed may depend on its crystal orientation with 536 respect to the kinematic framework. In the companion paper (Kilian & Heilbronner, 537 this volume) this correlation is explored. Comparison of the grain size maps (Figure 4) 538 with the maps of grain kernel average misorientation (gKAM) (Figure 6), shows that 539 regions with high overall gKAM values are also regions of overall smaller grain size. 540 Gradients of grain size and gKAM may not always be as well developed as in the 541 samples shown in Figures 4 and 7. The absence of such gradients is probably the result 542 of homogeneous deformation of the sample (across the entire width of the shear zone) 543 whereas gradients point to strain and possibly stress concentrations. This point will be 544 taken up later. 545 For regions with constant gKAM, however, the size ratios between texture 546 domains persist, as can be seen by comparing the map for the Y-domain and that for 547 the non-Y domain in Figure 8. They both show an overall size increase from top to 548 bottom, but at every level on that traverse, the Y-domain shows larger grain sizes than 549 the non-Y domain. For sample w935 (shown in Figure 8), the ratio between Y- and 550 non-Y domain is \sim 1.2, while for w965 (not shown), the same ratio would be \sim 1.0, 551 keeping in mind that this may also be an effect of lower indexing ratios in the non-Y-552 domain. In other words, while the overall recrystallized grain size is inversely 553 correlated to the level of the gKAM, the gKAM itself does not give rise to the grain size 554 difference between different texture domains. 555 556 5.3 Methods of segmentation: how to find the correct grain boundaries 557 558 To obtain a grain or particle size distribution (GSD or PSD), the individual grains 559 must be identified, and a grain map or a grain boundary map has to be constructed. 560 This operation is called segmentation, and there are a number of ways of achieving it: 561 by tracing the boundaries manually, or by letting the computer do the work, for

562 example, by identifying coherent grains on the basis of parallel crystal orientation, by 563 recognizing grain boundaries as sharp changes of crystal orientation or by solving a 564 minimization problem on orientation variance. For manual tracing of grain boundaries, 565 we use the human visual systems with its inbuilt intelligence and its well trained biases 566 (concerning the shape of objects and outlines, for example). It is commonly considered 567 the most reliable way of recognizing objects and we implicitly make use of it when we 568 inspect the result of a given segmentation (for example, in Figure 3), in order to judge 569 whether it correctly portrays what we see on the map. In the following, the three types 570 of segmentation described previously will be compared: 'CIP' denoting segmentation of 571 the EBSD maps using c-axis orientations only, while 'EBSDnc' and 'EBSDc' denote 572 segmentations of EBSD maps in full texture space, without any grain completion, and 573 with partial, supervised completion respectively.

574 For the CIP segmentation, 8 misorientation images (MOI) were used as described 575 above. On account of the histogram equalization carried out to enhance to contrast in 576 the MOIs, the effective cut-off angle for the definition of a grain boundary is difficult to 577 assess. Comparing the thresholded gradient images to the corresponding orientation 578 gradient images (OGI) showed that the cut-off angle is approximately 1/20 of the 579 thresholding level, and thus, that a minimum c-axis misorientation angle of 1.2° to 2.5° 580 defines a grain boundaries (see Table 3). Sometimes this leads to low angle boundaries 581 being classified as grain boundaries (see Figure 3c, right arrow). There is a simple 582 reason for not using the OGIs directly, although they might be considered the more 583 obvious choice. Compared to MOIs, the OGIs are noisy, smallest differences in c-axis 584 orientation within a grain give rise to a gradient which may not be much lower than 585 the minimum gradient defining the actual boundary. If the gradient images of 8 MOIs 586 are combined, the signal-to-noise ratio is much lower. If light optical input is used for 587 the calculation of the MOIs and OGIs, the OGIs cannot be used at all for segmentation, 588 because of additional noise sources (as described by Heilbronner & Barrett, 2014). 589 It is to be expected that the difference between CIP and EBSD segmentations also 590 depends on the level of indexing (Figure 3). For 100% indexing, all three types of 591 segmentations (CIP, EBSDc and EBSDnc) are expected to yield the same result, 592 provided that grain boundaries defined by misorientations about [0001] (which the 593 CIP method cannot detect) are absent, and the criteria for the definition of a grain 594 boundary (versus subgrain boundary) are the same. If a low indexing ratio is due to

595 holes or dust particles, the CIP and EBSDnc approaches are expected to be more 596 suitable because they avoid incorporating 'foreign phases' into grains (as shown in 597 Figure 3a, left arrow). In these situations, grain completion must be supervised. If low 598 indexing is due to poor pattern quality, however, EBSDc is probably more suitable, 599 because it can merge grains that are dissected by patches of non-indexed pixels. 600 Comparing the three segmentations in Figure 3, the first impression is that the grain 601 boundaries of the EBSD and CIP segmentations coincide very well, in particular the 602 EBSDnc segmentation that did not include grain completion is strikingly similar to the 603 CIP segmentation by producing the same holes and gaps. 604 CIP and EBSD segmentations were tested on a number of samples. The result was 605 always the same, irrespective of the level of indexing: the resulting grain size of the CIP 606 method was smallest, followed by the EBSDnc, and the largest grain size returned by 607 the EBSDc. In EBSD segmentation the misorientation angle used is the widely used 608 value of 10° while the c-axis angle in CIP is much smaller, <3° (compare Table 3). Using 609 an angle of 5° for the EBSD segmentation, however, would re-produce the CIP grain 610 sizes. Comparative histograms of 2-D diameters of CIP versus EBSDc and EBSDnc and 611 values for the 2-D RMS and 3-D mode values are shown in Figure 13. That grain 612 completion leads to a larger grain size is not surprising, as it allows to incorporate non-613 indexed pixels into the grains. However, the indexing ratio alone cannot account for the 614 differences in segmentation. Another reason for the consistently larger grain size found 615 by both EBSD methods lies in the clean-up procedure which removes single pixel 616 grains, leaving the smallest grain size class empty (see, for example, the histograms of 617 w935 in Figure 13). However, with the differences proving to be small and consistent, 618 especially with respect to the mode(D) (see Table in Figure 13), and in order to use a 619 homogeneous data set, the ensuing analyses were all based on CIP segmentation. 620 621 5.4 The recrystallized grain size in dislocation creep 622 623 There is a notion that grain size distributions can be described by a characteristic 624 size, if they are monomodal, or by a characteristic size ratio, if they are fractal. In the 625 context of dynamic recrystallization, and with an eye towards piezometric 626 interpretations we are looking for a characteristic or average grain size. Recrystallized 627 grain size piezometer relations can be written as $d = A \cdot \sigma^k$ or $\log(d) = A + k \cdot \log(\sigma)$

628 (Twiss, 1977; Poirier, 1985), where d stands for this average grain size, if the 629 recrystallized grain size is assumed to be in a steady state during dynamic 630 recrystallization and independent on temperature (e.g. Poirier & Guillopé, 1979; 631 Shimizu, 2008). However, finding this grain size is not trivial, mostly because what we 632 see of the grain size distribution is a 2-dimensional section of it. One option is to use 633 the 2-D size distribution and determine a characteristic measure for the grain size from 634 it, the other, to convert the distribution of sections to a distribution of 3-dimensional 635 grains and determine a characteristic measure form it. Here, both the 2-D and the 3-D 636 grain sizes were determined, the former because the results are to be compared 637 against the piezometer of Stipp & Tullis (2003), the latter because it depends less on 638 the shape of distribution than the former, thus providing a more reliable measure. 639 To assess grain growth during annealing, Heilbronner & Tullis (2002) performed 640 gain size analyses (of the same samples that are re-analyzed here). Using a much 641 coarser binning (limited by an old version of the stripstar program), they published 642 histograms of v(R), where v is the volume weighted distribution and R the radius of the 643 volume equivalent spheres. Maximum frequencies of regime 1, 2, and 3 samples 644 occurred in the 2-4 μ m bin (w940), 2-4 μ m bin (w946) and 6-8 μ m bin (w935 and 645 w920), the estimated modal 3-D diameters are given as 7 µm, 8 µm, and 14 µm. The 646 values for regime 3 are confirmed by the present study, which yields a value of 14.7 μ m 647 (w935). As the regime 1 and 2 grain sizes are too small to be properly resolved by the 648 CIP method, it is not surprising that the grain sizes found with EBSD are smaller, with 649 values of 5.3 µm (w940) and 6.5 µm (w946) (Table 4a). 650 In their study on texture evolution in regime 3 dislocation creep, Heilbronner & 651 Tullis (2006) found that the recrystallized grains in the 'prism domain' (here Y-652 domain) are larger than grains of other domains. Considering inverse grain boundary 653 density (Figure 12c in Heilbronner & Tullis, 2006), the size ratio between the 654 recrystallized grains in the Y-domains compared to the average reaches a value of \sim 1.4 655 at high shear strains. The same figure also predicts that the ratio for the so called 'basal 656 domain' (here B-domain) should attain a value of 1.0 or even <1.0. To check these 657 claims for regime 3, and to check if they also apply to regime 1 and 2 samples, maps of 658 texture domains were prepared and the grain size of the Y- and B- domain determined 659 (Figures 8 and 9). For regime 3, it is found that the 3-D mode of the recrystallized 660 grains of the bulk is 14.7 μ m, that of the Y-domain 16.0 μ m and that of the non-Y

661 domain 13.4 µm (sample w935, Figure 8). However the ratio of the recrystallized grain 662 size in the Y-domain to the average is only 1.1 (w935) and 1.01 (w965), while the ratio 663 of the B-domains to the average is 1.0 (w935) and 1.05 (w965) (Figure 9). In other 664 words, the expectation that Y-domains in regime 3 have a larger recrystallized grain 665 size and B-domains an average or smaller grain sizes is confirmed, if not to the full 666 extent of the predictions made in 2006. 667 Note that for the study presented in the paper by Heilbronner & Tullis (2006) the 668 available data base was not sufficiently large and the method of size estimation via 669 grain boundary density not well enough calibrated to allow for a quantitative 670 prediction. Nevertheless, it could be documented that the relative size of the 671 recrystallized grains of the 'prism', the 'basal' and other domains evolve continuously 672 with increasing shear strain. In this study another interesting point emerges: the ratio 673 between the recrystallized grain sizes in the different domains depends on the regime 674 and may change depending on the stress level. For regime 1 and 2, the size ratios of the 675 recrystallized grains in the Y- and B- domains with respect to the average can also be 676 extracted from Figure 9. Proceeding from the strongest to the weakest sample (regime 677 1 w1092, regime 2 w946, regime 3 w965 and w935), the size ratio for the Y-domain is 678 0.95, 1.0, 1.0, 1.1, and for the B-domain 1.1, 1.1, 1.05, 0.97, respectively. The resulting 679 stress dependence of the recrystallized grain size in the Y- and B-domain are shown in 680 Figure 10c. In view of the subtle difference between the two and the possible errors 681 associated with the stress determinations, it is not clear if this result, however 682 provocative, is significant at all - it certainly merits an additional study. 683 684 5.5 Dependence of grain size on stress 685 686 When the dislocation creep regimes were introduced by Hirth & Tullis (1992), 687 the regimes 1, 2 and 3 were defined by the microstructure. At the same time, the 688 boundaries between the regimes were observed to be constant stress boundaries, 689 placing regime 1 above a differential stress, $\Delta\sigma$, of 400 MPa, regime 2 at approximately 690 300 MPa and regime 3 at or below 200 MPa. For shear experiments, these values 691 translate to shear stresses, τ, of 200 MPa, 150 MPa, and 100 MPa, respectively, values 692 that were realized, e.g., in the studies of Heilbronner & Tullis (2002 and 2006). The

693 stress-strain curves of the samples analyzed here (Figure 1b) also confirm this trend to

close approximation. Only the low strain sample of regime 2 (w1086) deforms at a
higher shear stress than the low strain sample of regime 1 (w940), raising the question
whether w1086 should not better be counted as regime 1.

697 When plotting the recrystallized grain sizes against differential stress, the high 698 strain samples follow a clear trend (Figure 10a), however at higher stress levels than 699 predicted by the quartz piezometer of Stipp & Tullis (2003). Including the low strain 700 samples does not significantly alter the picture (Figure 10b). If a curve is fitted through 701 the data, again, higher stresses or higher grain sizes would be predicted compared to 702 the piezometer. In the case where the grain size is given as the 3-D mode (red curves in 703 Figure 10), this is to be expected because the 3-D mode is always larger than the 2-D 704 RMS for which the piezometer was calculated. But the curves fitted to the 2-D RMS 705 values (green curves in Figure 10) also yield higher stresses or grain sizes. 706 Where does this discrepancy come from? A number of explanations are possible. 707 Heilbronner & Tullis (2006) attributed the higher stresses to the use of a solid 708 confining medium as compared to the molten salt assembly that had been used for the 709 piezometer experiments. If the correction proposed by Holyoke & Kronenberg (2010) 710 were to be used, the curve fit would shift to lower stresses but still remain significantly 711 above the piezometer. However, this correction was not used for the re-calculation of 712 the stress strain curves because without it, the new rig software achieved correct 713 stresses as 'calibrated' against the quartz-coesite transition (Richter et al., 2016).

714 Comparing general shear experiments to axial shortening ones requires a 715 conversion of shear stress to differential stress. Lower differential stresses could result if, instead of the Mohr circle construction, $\Delta \sigma = 2 \cdot \tau$, smaller conversion factors could 716 717 be used. For torsion experiments, $\Delta \sigma = \sqrt{3} \cdot \tau$, (Paterson & Olgaard, 2000), and if the stress exponent n is considered, using $\tau = 3^k \cdot \Delta \sigma$ (where k = - (1+1/n)/2), a range of 718 values from $\Delta \sigma = 3 \cdot \tau$ (for n=1) and $\Delta \sigma = \sqrt{3} \cdot \tau$ (for n >>1) is possible (Ranalli 1987; 719 720 Schmid et al, 1987). In other words, none of these theoretically possible conversion 721 factors produces an acceptable overlap of the curve fits and the piezometer. 722 Note that the line fit for the 2-D RMS data (Figure 10b) is approximately parallel

to the regime 1 piezometer (grey line). If the shear stress is used directly ($\Delta \sigma = \tau$), the curve fit intersects the regime 2&3 piezometer (black line) between the regime 2 and 3 data points, the point being close to the regime 2&3 piezometer, but parallel and above the regime 1 piezometer. This raises the question if the regimes and regime boundaries

727 of the general shear experiments correspond one-to-one to those of the axial 728 shortening experiments. However, because more data would be needed to explore the 729 implications of this observation, this line of arguments is not pursued any further here. 730 The piezometer experiments were conducted to relatively low finite strains and 731 were stopped long before 100 % volume fractions of recrystallization was achieved. 732 However, including low strain experiments (Figure 10b) shows that the mismatch 733 cannot be due to different amounts of recrystallization. An interesting question is 734 whether the piezometer relation is restricted to coaxial progressive deformation 735 deformation and does not apply to non-coaxial progressive deformation, however, the 736 answer to this question is again outside the scope and focus of this study. 737 Irrespective of the absolute stress levels of the experiments discussed here, a 738 relation of misorientation density and recrystallized grain size can be documented. The 739 stress-grain size relation (Figure 10a), is calculated using only the high strain and more 740 or less fully recrystallized samples. In view of the grain size gradients across theses 741 samples (Figure 4), and the relation of these on the grain averaged KAM (Figure 7), a 742 low and a high gKAM site are used in each case. In all cases, lower gKAM values 743 coincide with larger recrystallized grain size. While each pair is plotted for the shear 744 stress determined for the sample, it is quite possible that the grain size gradient in fact 745 indicates a strain rate gradient caused by the localization of the deformation into a 746 narrow active zone and which may potentially result in a stress gradient. Progressive 747 thinning of the samples has been used as an explanation for the apparent strain 748 hardening at the end of long shear experiments (Heilbronner & Tullis, 2002). Raised 749 stress levels may also occur at the grain scale, both in function of the crystallographic 750 orientation of the grain with respect to the principal the kinematic framework, or at 751 grain-to grain contacts as long as recrystallization is incomplete. It is therefore possible 752 that shear stresses determined for bulk samples are different from the stress 'felt' by 753 the actively deforming material. 754 755

- 756
- 757
- 758 759

760		6. Summary and conclusions
761		
762		A microstructure and texture analysis of 7 samples of Black Hills Quartzite,
763	defo	rmed experimentally in the dislocation creep regimes 1, 2 and 3, was carried out
764	with	the aim of comparing previously published data obtained by the CIP method to a
765	rene	wed analysis making use of the higher resolution (both spatially and in terms of
766	cryst	allographic orientation) of EBSD. Extended grain size analyses now include
767	samp	ples from regime 1 and 2. The stress strain data were re-calculated using an
768	impr	roved version of the rig program.
769	1.	The c-axis orientation images and pole figures obtained by CIP and EBSD are
770		practically the same, with the exception of the inclination which is a innate
771		problem of the CIP method, and the segmentations using a the CIP and EBSD
772		approach recognize the same grain boundaries, again with very few exceptions.
773	2.	The Y-domain (identified previously as 'prism domain) is composed of two
774		subdomains, the same is true of the B-domain ('basal' domain). The size of the
775		subdomains corresponds to the original grain size of BHQ.
776	3.	Grain size analysis shows that the recrystallized grain size of BHQ deformed in
777		general shear experiments
778		- depends on texture
779		- depends on flow stress
780		- does not depend the amount of total sample strain-or recrystallization
781		- is inversely-correlated with misorientation density across samples with strain
782		gradients
783	4.	The recrystallized grain size of the Y- and B- domain may have different stress
784		dependences.
785	5.	The shape and grain size of the Y-subdomains suggests that they deform iso-
786		viscous to the bulk experiment, but potentially to a lower shear strain than the
787		bulk experiment, calling for an additional deformation mechanism other than
788		dislocation creep.
789	6.	The stress dependence of the grain size does not fit the piezometer of Stipp and
790		Tullis (2003), which was produced from axial experiments, but predicts higher
791		stress or higher grain sizes.
792		

- 793 Future work is suggested to examine whether the discrepancy between the grain 794 sizes obtained here and the published piezometer are only due to discrepancies 795 between the stress calculations for solid medium confining pressure as opposed to 796 molten salt assembly, as was used for the piezometer experiments. If so, this would 797 suggest that the stresses reported in the literature for experiments carried out with 798 solid medium confining pressures are too high by a factor of 2 or more. On the other 799 hand, it may indeed show that the co-axial and non-coaxial progressive deformation 800 produce different re-crystallized grain sizes. 801
- 802

803 **7.** Acknowledgements

we are indebted to jain runs who not only provided the samples of this study but
--

- 806 who continues to contribute, in the generous fashion typical for her, to the
- 807 advancement of microstructure and rock deformation studies. We wish to thank Willy
- 808 Tschudin of Basel University for the preparation of excellent thin sections, Tom
- 809 Eilertsen and Kai Neufeld of the Arctic University of Tromsø for their dedicated
- 810 technical support and the time and effort spent during the acquisition of the EBSD
- 811 maps. Michael Bestmann is thanked for always sharing his immense experience. The
- 812 paper has further profited from discussions with Michael Stipp, Greg Hirth and
- 813 Andreas Kronenberg. Support by the National Science Foundation of Switzerland, grant
- no. NF 200021-138216 (Deformation mechanisms in naturally and experimentally
- 815 deformed minerals and rocks (9)) is gratefully acknowledged.
- 816

 Bilby, B. A. and Kolbuszewski, M. L. (1977). Finite deformation of an inhomogeneity in 2-dimensional slow viscous incompressible-flow. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 355(1682), 335–353. Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag. Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors). Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth,	817	Reference	es
 Bilby, B. A. and Kolbuszewski, M. L. (1977). Finite deformation of an inhomogeneity in 2-dimensional slow viscous incompressible-flow. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 355(1682), 335–353. Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R. and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Dury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G.,	818		
 Bilby, B. A. and Kolbuszewski, M. L. (1977). Finite deformation of an inhomogeneity in 2-dimensional slow viscous incompressible-flow. Proc. R. Soc. London Ser. A. Math. Phys. Eng. Sci., 355(1682), 335–353. Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Mer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth,	819		
 2-dimensional slow viscous incompressible-flow. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 355(1682), 335–353. Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1-21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005]B004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G.	820	Bilby, B. A.	and Kolbuszewski, M. L. (1977). Finite deformation of an inhomogeneity in
 A-Math. Phys. Eng. Sci., 355(1682), 335-353. Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1-21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145-1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1-23. Heilbronner, R. and Barrett, S. (2014). Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	821		2-dimensional slow viscous incompressible-flow. Proc. R. Soc. London Ser.
 Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartz itse experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dis	822		A-Math. Phys. Eng. Sci., 355(1682), 335–353.
 Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Disl	823		
 carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub, pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	824	Chernak, L	. J., Hirth, G., Selverstone, J., and Tullis, J. (2009). Effect of aqueous and
 Geophysical Research-Solid Earth, 114:B04201. Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	825		carbonic fluids on the dislocation creep strength of quartz. Journal of
 Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	826		Geophysical Research-Solid Earth, 114:B04201.
 Dellangelo, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	827		
 quartzites. Tectonophysics, 169(1-3):1–21. Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre gates, J. Struct. 	828	Dellangelo	, L. N. and Tullis, J. (1989). Fabric development in experimentally sheared
 Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggreg. J. Struct. 	829		quartzites. Tectonophysics, 169(1-3):1–21.
 Gleason, G. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	830		
 in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	831	Gleason, G.	. C., Tullis, J., and Heidelbach, F. (1993). The role of dynamic recrystallization
 deformed quartz aggregates. J. Struct. Geol., 15(9-10),1145–1168. Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1-23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond, Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	832		in the development of lattice preferred orientations in experimentally
 Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1–23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	833		deformed quartz aggregates. I. Struct. Geol., 15(9-10),1145–1168.
 Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics, 247(1-4),1-23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	834		
 determined with the molten-salt cell. Tectonophysics, 247(1-4),1-23. Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	835	Gleason, G.	. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates
 Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024-1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	836		determined with the molten-salt cell. Tectonophysics. 247(1-4).1–23.
 Heilbronner, R. and Barrett, S. (2014), Image Analysis in Earth Sciences - Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024-1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	837		
 Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	838	Heilbronne	er, R. and Barrett, S. (2014). Image Analysis in Earth Sciences -
 Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	839		Microstructures and Textures of Earth Materials, Spinger Verlag,
 (Online). Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024-1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	840		Heidelberg, 520 pp. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8
 Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	841		(Online)
 Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/ 2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024-1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	842		(0
 during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	843	Heilbronne	er, R., and I. Tullis (2006). Evolution of c axis pole figures and grain size
 quartzite, J. Geophys. Res., 111, B10202, doi:10.1029/2005JB004194. Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	844		during dynamic recrystallization: Results from experimentally sheared
 Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	845		auartzite, I. Geophys. Res., 111, B10202, doi:10.1029/2005/B004194.
 Heilbronner, R. and Tullis, J. (2002). The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	846		······································
 and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	847	Heilbronne	er, R. and Tullis, J. (2002). The effect of static annealing on microstructure
 deformed in axial compression and shear. In: S. de Meer, M.R. Drury, J.H.P. de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	848		and crystallographic preferred orientations of quartzites experimentally
 de Bresser and G.M. Pennock (Editors), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	849		deformed in axial compression and shear. In: S. de Meer, M.R. Drury, I.H.P.
 and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond., Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	850		de Bresser and G.M. Pennock (Editors). Deformation Mechanisms. Rheology
 Spec. Pub., pp. 191-218. Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	851		and Tectonics: Current Status and Future Perspectives. Geol. Soc., Lond.
 Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	852		Snec Pub nn 191-218
 Heilbronner, R. (2000). Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. Journal Structural Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	853		open rubi, ppr 191 210
 4 Hendred Filler, R. (2006). An and Structural grain boundary detection and grain size analysis 4 Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: 4 specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 4 1037. 4 Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	854	Heilbronne	er R (2000) Automatic grain boundary detection and grain size analysis
 Geology, 22: 969-981. Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	855	includi onin	using polarization micrographs or orientation images Journal Structural
 Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	856		Geology 22. 969-981
 Hielscher, R. and Schaeben, H. (2008). A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	857		deology, 22. 303 301.
 specification of the MTEX algorithm, J. Appl. Crystallography, 41, pp. 1024- 1037. Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	858	Hielscher	R and Schaehen H (2008) A novel note figure inversion method:
 860 1037. 861 862 Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	859	meisener,	specification of the MTEX algorithm I Appl Crystallography 41 pp 1024-
 861 862 Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct. 	860		1037
862 Hirth, G., and J. Tullis (1992). Dislocation creep regimes in quartz aggre- gates, J. Struct.	861		1007.
in an a, and j. i and (1772). Distocation creep regimes in quarts aggre- gates, J. Struct.	862	Hirth C a	nd I Tullis (1992) Dislocation creen regimes in quarty aggre- gates I Struct
863 Geol 14 145–159	863	1111 ui, u., d	G_{PO} 14 145–159
864	864		

865 866 867 868	Holyoke, C. W., III, and A. K. Kronenberg (2010). Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology, Tectonophysics, 494, 17–31, doi:10.1016/j.tecto.2010.08.001.
869 870 871 872	Kidder, S., Hirth, G., Avouac, JP., and Behr, W. (2016). The influence of stress history on the grain size and microstructure of experimentally deformed quartzite. J. Struct. Geol., 83, 194–206.
874 875 876 877	Kilian, R. and Heilbronner, R. (subm.). Interrelation of creep processes and crystallographic preferred orientation in experimentally deformed Black Hills Quartzite. Solid Earth, this volume.
878 879 880	Law, R.D. (2014). Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. J. Struct. Geol., 66, 129-161.
881 882 883	Mancktelow, N., and G. Pennacchioni (2010), Why calcite can be stronger than quartz, J. Geophys. Res., 115, B01402, doi:10.1029/2009JB006526.
884 885 886	Mancktelow, N. (1987) Quartz Textures from the Simplon Fault Zone, Southwest Switzerland and North Italy, Tectonophysics, 135, 133-153.
887 888	Mancktelow, N. S. (2011). Deformation of an elliptical inclusion in two-dimensional incompressible power-law viscous flow. J. Struct. Geol., 33(9), 1378–1393.
889 890 891 892	Panozzo Heilbronner, R. and Pauli, C. (1993). Integrated spatial and orientation analysis of quartz c-axes by computer-aided microscopy. J. Struct. Geol., 15(3-5): pp. 369-382.
893 894 895	Paterson, M.S., Olgaard, D.L., 2000. Rock deformation tests to large shear strains in torsion. J. Struct. Geol. 22, 1341–1358
896 897 898 899	Pec, M., H. Stünitz, R. Heilbronner, and M. Drury (2016). Semi-brittle flow of granitoid fault rocks in experiments, J. Geophys. Res. Solid Earth, 121, 1677–1705, doi:10.1002/2015JB012513.
900 901 902 903 904	Pennacchioni, G., Menegon, L., Leiss, B., Nestola, F., Bromiley, G., 2010. Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse-grained quartz veins. Journal of Geophysical Research-Solid Earth 115. DOI 10.1029/2010JB007674
905 906 907	Poirier, J. (1985). Creep of crystals: high-temperature deformation processes in metals, ceramics and minerals. Cambridge Univ Press, Cambridge.
909 910 911	Poirier, J. and Guillope, M. (1979). Deformation induced recrystallization of minerals. Bulletin De Mineralogie, 102(2-3), 67–74.
912 913	Post, A., Tullis, J., and Yund, R. (1996). Effects of chemical environment on dislocation creep of quartzite. Journal of Geophysical Research-Solid Earth,

914	101(B10):22143-22155.
915 916 017	Ranalli, G. (1987). Rheology of the Earth, 1st ed. Allen and Unwin, London.
917 918 919 920	Rahl, J. M. and Skemer, P. (2016). Microstructural evolution and rheology of quartz in a mid-crustal shear zone. Tectonophysics, 680, 129–139.
921 922 923 924	Richter, B., Stünitz H. and Heilbronner R. (2016), Stresses and pressures at the quartz- to-coesite phase transformation in shear- deformation experiments, J. Geophys. Res. Solid Earth, DOI: 10.1002/2016JB013084.
925 926 927 928	Schmid, S. and Casey, M. (1986). Complete fabric analysis of some commonly ob- served quartz c-axis patterns, Volume 36 of Geophysical Monograph, 263– 286. American Geophysical Union.
929 930 931	Schmid, S., Panozzo, R., and Bauer, S. (1987). Simple shear experiments on calcite rocks - rheology and microfabric. Journal of Structural Geology, 9(5-6),747–778.
932 933 934 935	Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal Of Structural Geology, 30(7), 899–917.
936 937 938 939	Stipp, M. and Kunze, K. (2008). Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates. Tectonophysics, 448(1-4):77–97.
940 941 942	Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 2088, doi:10.1029/2003GL018444.
943 944 945 946 947	Stipp, M., Stünitz, H., Heilbronner, R. and Schmid, S.M. (2002) The eastern Tonale fault zone: a 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Jour. Struct. Geol., v.24, pp.1861- 1884.
948 949 950 951 952	Stipp, M., Tullis, J., and Behrens, H. (2006). Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer. Journal of Geophysical Research-Solid Earth, 111(B4).
953 954 955	Tikoff, B. and Fossen, H. (1993). Simultaneous pure and simple shear - the unifying deformation matrix. Tectonophysics, 217(3-4), 267–283.
956 957 958 959	Tullis, J., Christie, J., and Griggs, D. (1973). Microstructures and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin, 84(1), 297–314.
960 961 962	Tullis, J. (1977). Preferred orientation of quartz produced by slip during plane strain. Tectono- physics, 39(1-3), 87–102.

963 Twiss, R. (1977). Theory and applicability of a recrystallized grain-size
964 paleopiezometer. Pure and Applied Geophysics, 115(1-2), 227–244.
965
966

967	Tabl	le Captions
968		
969		
970	Tabl	e 1
971		
972	Mecl	hanical data for general shearing experiments of Black Hills Quartzite.
973	1	Dislocation creep regime: 1, 2, 3; a, b = low, high shear strain
974	2	Sample number
975	3	Temperature
976	4	Minimum shear strain rate (at beginning of experiment, calculated from
977		measured shearing and thinning of sample, for constant applied displacement
978		rate)
979	5	Maximum shear strain rate (at end of experiment, calculated as above)
980	6	Confining pressure (confining medium NaCl)
981	7	Amount of water added
982	8	Shear stress at peak or yield
983	9	Steady state shear stress
984	10	Shear stress at end of experiment
985	11	Differential stress, calculated as $2 \cdot \tau_{flow}$
986	12	Displacement of forcing block parallel to 45° pre-cut
987	13	Thickness of sample at start
988	14	Thickness of sample at end of experiment
989	15	Apparent shear strain at end of experiment, as indicated on stress strain plots of
990		shear experiments = (displacement along 45° pre-cut) / (final thickness of shear
991	10	zone)
992	16	Effective shear strain = $\tan(\Psi) / k$, where = shear angle (15), and k = $\tan(\pi)$ this
993		
994		
995	Tabl	a 2
990	Tabi	e 2
997	EBCI	data acquisition
999	1	Dislocation creen regime: 1, 2, 3: a, $h = low$ high shear strain
1000	2	Sample name
1000	3	Acceleration voltage
1002	4	Prohe current
1003	5	Chamber pressure (Variable Pressure setting)
1004	6	Aperture of beam
1005	7	Working distance
1006	8	Magnification
1007	9	Speed of acquisition
1008	10	Total recording time
1009	11	Number of reflectors and number of bands detected
1010	12	Mean value of MAD (mean angular deviation)
1011	13	Hough resolution
1012	14	Binning
1013	15	Step size
1014	16	Map size
1015	17	Percentage of indexed measuring points

1016		
1017	n.a.	data not available
1018	Reco	rding dates:
1019	dark	grev AZtec 2.2. July 2014
1020	light	grev AZtec 2.3. March 2015
1021	white	e A7.tec 2.3 September 2016
1022		
1023		
1024		
1025	Table	e 3
1026	10.51	
1027	Imag	re processing & segmentation
1028	1	Dislocation creen regime: 1, 2, 3; a, $b = low$, high shear strain
1029	2	Scanned maps
1030	3	Method of image acquisition: EBSD = electron back scatter diffraction. CIP =
1031	0	computer integrated polarization microscopy
1032	4	Size of EBSD map or CIP image used for analysis
1033	5	Percentage of indexed nixels
1034	6	Percentage of indexed pixels after correcting single misindexed pixel
1035	7	Sten size during image acquisition = nixel size of raw image
1036	8	Type of image used for segmentation
1037	9	Magnification (nearest neighbour interpolation)
1038	10	Pixel size during segmentation
1039	11	Segmentation procedure - key strokes of Lazy grain boundary and Lazy erode
1040		dilate macro
1041	12	Minimal angular difference used to define a grain boundary
1042		0 0 0
1043	n.a.	data not available
1044	EBSE	Dmap obtained by electron back scatter diffraction
1045	CIP	map obtained by computer integrated polarization microscopy
1046		
1047		
1048		
1049	Table	e 4
1050		
1051	Grair	n size measurements.
1052	1	Processed maps: prefix 1, 2, 3 indicates regime 1, 2, 3; a, b indicates low, high
1053		shear strain
1054	2	Number of grains with >75% of pixels indexed
1055	3	Mode of v(D) where v = volume weighted distribution and D = diameter of
1056		recalculated 3-D grains (volume equivalent spheres) = mean of Gaussian fit
1057	4	Standard deviation of Gauss fit
1058	5	Mean of Gaussian fit + 1 standard deviation = upper limit that includes 67% of
1059		population of 3-D grains
1060	6	Upper limit including 84% of population of 3-D grains,
1061	7	Upper limit including 99% of population of 3-D grains,
1062	8	Root mean square of frequency distribution of diameter of 2-D sections h(d)
1063		where h = number density and d = diameter of 2D grains (area equivalent circles)
1064		

- 1065 EBSDmap obtained by electron back scatter diffraction
- 1066 CIP map obtained by computer integrated polarization microscopy
- 1067 B-domain pixels with c-axis maximum at periphery of pole figure
- 1068 Y-domain pixels with c-axis maximum in center of pole figure

1070	Figure Captions
1070	riguie captions
1071	
1072	Figure 1
1073	riguie 1
1074	Canaral chaar avaariments on Black Hills quartzite
1075	(a) Simplified drawing of sample assembly for general shear experiments:
1070	(a) Simplified drawing of sample assembly for general shear experiments. 1 - confining medium (NaCl) 2 - axial load (σ 1 piston (Al2O3) 3 - forcing block
1077	$(A1203)$ A - quartrite sample at 45° with respect to σ^{1} piston 5 - furnace
1070	(arbon pyrophyllita)
1075	(cal boil, pyrophymic) (b) Shear stress (π) versus apparent chear strain (y); blue = regime 1 green = regime
1000	(b) Shear stress (c) versus apparent shear strain (γ). Drue – regime 1, green – regime 2, rod – regime 2, stippled line – relatively low finite strain solid line – relatively
1001	high finite strain (compare Table 1)
1002	nigh ninte strain (compare rable 1).
1005	
1004	Figure 2
1005	rigure 2
1000	Orientation images
1007	(a) FRSD many with color look up tables (CLUT)
1000	$ \begin{array}{l} \text{(a) EDSD lineps with Color look-up tables (CE01)} \\ \text{Euler PCR} \qquad \text{Euler coloring with Pod} = (a1 \text{ Croon} = \Phi \text{ Rlue} = (a2 \text{ (see CLUT)}) \end{array} $
1009	Euler KOD Euler Coloring with Keu – φ 1, Green – φ , Blue – φ 2 (see CLOT).
1000	(b) c-axis orientation images with look-up tables (LUT)
1002	Λ 7L INCc_axis azimuth (0°-180°) and inclination (0°-180°) images calculated from
1092	Fuler image stereographic projection of LUT in upper right
1093	COL c avis orientation image using Spectrum CLUT
1094	COI C-axis orientation gradient image (EDC9a) showing average gradient with
1095	respect to 8 paighbours (see LUT)
1090	MOI a avia misoriantation imaga nivels with a avia close to reference direction
1097	MOI C -axis inisoi ientation iniage: pixels with C-axis close to reference unection $0^{\circ}/21^{\circ}$ appear bright (coo CLUT)
1090	Unner right: c-pyis nole figure with (left-handed) XVZ sample coordinate system and
1100	coordinate system for c axis orientation. Note that 7 of this reference system is parallel
1100	to the structural V direction. Scale has and sinistral shear sense apply to all
1101	Detail of sample w965 is shown. For image processing, see text
1102	betan of sample w 705 is shown. For image processing, see text.
1103	
1104	Figure 3
1105	
1100	Segmentation based on texture
1107	Comparison of segmentations based on full texture (EBSD) and c-axis texture and
1100	shane (CIP)
1110	From top to bottom
1111	Grain houndaries superposed on Euler RGB image area with relatively low (\sim 78%)
1112	indexing ratio Arrow points to low angle grain boundary that is detected through
1112	structural filtering
1114	Area with relatively high (\sim 94%) indexing ratio Arrow points to segmentation
1115	artefact
1116	Frequency distributions, $h(d)$, $d = diameter of area equivalent circle black = ERSD$
1117	segmentation, grey = CIP segmentation, root-mean-square values are indicated
***/	segmentation, proj on segmentation, root mean square values are maleated.

- 1118 Volume density distributions, v(D), D = diameter of volume equivalent sphere, derived
- 1119 from input h(d) using stripstar (see text), modal values are indicated.
- 1120 Segmentation using full texture assuming hexagonal symmetry of quartz and (a)
- 1121 grain completion (see text).
- 1122 (b) Same as (a) without grain completion.
- 1123 Segmentation using c-axis orientations only (see text). (c)
- 1124 1125

Figure 4 1126

- 1127
- 1128 Grain size maps.
- 1129 Color coded grain size maps visualizing the diameter of area equivalent circles, d
- 1130 From left to right: for undeformed Black Hills quartzite and samples deformed in
- 1131 regime 1, 2 and 3. Scale, shear sense, and look-up table for grain size apply to all. Red
- 1132 indicates the diameter of an area equivalent circle $d \ge 25 \ \mu m$. Note, the diameter of
- 1133 undeformed Black Hills quartzite is $\sim 100 \,\mu m$.
- 1134 1135

1136 Figure 5

- 1137
- 1138 Recrystallized grain size for dislocation creep regimes 1, 2, and 3.
- 1139
- 1140 4.3) and high shear strains (5.8 < γ < 7.1).
- D = diameter of volume equivalent sphere. The mode of v(D) is obtained by a Gauss fit 1141 1142 to the distribution.
- 1143 Note histograms with different size ranges: $(0 < D < 25 \mu m)$ for regime 1 and 2, (0 < D1144 $< 50 \,\mu m$) for regime 3.
- 1145 Inset shows the grain size distribution of undeformed Black Hills quartzite for comparison.
- 1146
- 1147

1148

1149 Figure 6

1150

1151 Details of c-axis texture.

- 1152 Color coded orientation images highlighting 'double maxima' c-axis orientations.
- 1153 Contoured polefigures superposed on the AZI color look-up-table (CLUT) used (a) 1154 to highlight the azimuth of the c-axis orientation.
- 1155 Location of preferred orientations on the c-axis pole figure, proposed by Inset 1156 Heilbronner & Tullis (2006): B ('basal'), R ('rhomb'), Y ('prism') and the 1157 direction of the axial load (at 45° with respect to the shear zone, usually inferred to be the direction of σ_1). 1158
- 1159 (b) Masked c-axis orientation images. Mask blocks all pixels with c-axis 1160 orientations outside a 30° cone (15° opening angle) about the reference 1161 direction. The reference direction is indicated below the image and 1162 corresponds to the upper maximum on the pole figure shown in (a).
- 1163 (c) Same as (b) with the reference direction indicated below the image
- 1164 corresponding to the lower maximum on the pole figure shown in (a).
- 1165
- 1166

- 1167 **Figure 7**
- 1168
- 1169 Recrystallized grain size as function misorientation density.
- 1170 Maps of grain kernel average misorientation (gKAM) are shown for 3 dislocation creep
- 1171 regimes. Maps cover nearly the full width of the shear zone. Gradients of gKAM are
- 1172 clearly visible. Modes of v(D) (size distribution of 3D grains) are calculated for high and
- 1173 low gKAM sites in samples w1092 and w946, and for 4 different sites of sample w935.
- 1174 Scale bar and color coding of gKAM apply to all.
- 1175
- 1176

1177 Figure 8

1178

- 1179 Mapping grain size in texture domain.
- 1180 Grain size maps of detail of sample w935 (regime 3) are shown. From left to right:
- 1181 showing all grains, grains in the upper and lower Y-subdomains, in the whole Y-domain
- and for c-axis orientations outside the Y-domain (see c-axis pole figure), same
- 1183 subdomains as in Figure 7. Domain maps are derived for c-axes orientations within a
- 1184 30° cone (15° opening angle) with respect to the central orientation. Scale bar and
- 1185 shear sense apply to all.
- 1186 Above maps:
- 1187 Modes of v(D) are indicated above maps, where v = volume density distribution, D =
- 1188 diameter of volume equivalent sphere.
- 1189 Below maps:
- 1190 Histograms showing area weighted distributions of grain size (= grey value histogram
- 1191 of gain size map, see Heilbronner & Barrett, 2014 chap. 12), n = number of grains,
- 1192 mean = arithmetic mean of histogram. Note that the grain size in the Y-domains is
- 1193 larger than in the non-Y-domain, but the difference between upper and lower Y-
- 1194 subdomain is not considered significant.
- 1195

1196

1197 Figure 9

1198

- 1199 Recrystallized grain size as function of texture.
- 1200 Grain size distributions of recrystallized grains for four samples of regime 1, 2, and 3 of
- 1201 dislocation creep, arranged in 4 columns with c-axis pole figure above.
- 1202 (a) Grain size distributions of all recrystallized grains.
- 1203 (b) Grain size distributions of recrystallized grains with c-axis orientations within
- 1204 30° cone (15° opening angle) about Y direction.
- 1205 (c) Same as (b) for B direction.
- 1206 Inset (upper left) shows location of c-axis orientations of B- and Y-domain on the pole1207 figure.
- 1208

1209

1210 Figure 10

- 1211
- 1212 Recrystallized grain size as function of flow stress.
- 1213 Two measures of average grain size are plotted against differential stress, $\Delta\sigma$ (with $\Delta\sigma$
- 1214 = 2· τ, see Table 1).

- 1215 Top row: Mode of v(D), where D = diameter of volume equivalent sphere, and v =
- 1216 volume weighted frequency distribution (=3-D mode).
- 1217 Bottom row: Root-mean-square of h(d), where d = diameter of area equivalent circle,
- 1218 and h = frequency distribution, as used for the piezometer relation by Stipp & Tullis
- 1219 (2003) (= 2-D RMS).
- 1220 (a) High strain experiments $(5.8 < \gamma < 7.1)$: in each case, higher value from low gKAM
- 1221 region, lower value for high gKAM region (see Figure 6).
- 1222 (b) One measurement for each experiment (see Figure 1, Table 1).
- 1223 (c) Grain sizes of Y- and B-domains (see Figure 7, 8)
- 1224
- 1225

1226 Figure 11

- 1227
- 1228 Comparison of c-axis orientation images calculated with CIP from optical or EBSD 1229 derived input.
- 1230 EBSD c-axis orientation image from EBSD input (SEM),
- 1231 c-axis orientation image from CIP input (polarization microscopy). CIP
- 1232 Spectrum CLUT for c-axis color coding, scale and shear sense apply to all.
- 1233 With exception of w946, the exact same sampling sites are shown for each pair.
- 1234
- 1235

1236 Figure 12

- 1237
- 1238 Spatial distribution and cluster size of Y-subdomains.
- 1239 Results are shown for regime 3 sample w935.
- 1240 (a) Spatial analysis to determine if spatial distribution of subdomains is random, 1241 clustered, or ordered (anti-clustered) :
- 1242 Maps of subdomains with grain and phase boundaries are shown: 'upper' (green) 1243 and 'lower' (yellow) refer to the upper and lower maximum of the pole figure
- 1244 shown at right, scale bar below applies to all. On right: plot showing fraction of
- 1245 phase boundary surface (pb) and grain boundary surface (gb) versus volume
- 1246 fraction of the subdomains. Solid and stippled lines are the expected surface
- 1247 fractions for the random case. Fraction pb below and fractions gb above the 1248 expected values indicate significant clustering.
- 1249 (b) Autocorrelation analysis of domain and subdomains: thresholded maps with 1250 autocorrelation function (ACF) below. Long and short diameters of contours in ACF 1251 reflect size and shape of clusters in domain and subdomain maps. Scale bar applies 1252 both to ACFs and maps. 3 contour levels are indicated as % of ACF_{max}. Superposed 1253 yellow lines indicate long diameter and orientation of 30% contour, black lines are extrapolations to 20% contour (see text).
- 1254
- 1255 1256

1257 Figure 13

- 1258
- 1259 Comparison of segmentations.
- 1260 Frequency distributions h(d) are shown for regime 2 and 3. EBSD segmentations are
- 1261 plotted in black, corresponding CIP segmentation in gray.
- 1262 (a) EBSD segmentation with grain completion
- 1263 (b) EBSD segmentation without grain completion.

1264	(c) Table with RMS of $h(d)$ and modes of $v(D)$, where $d = 2$ -D diameter of area
1265	equivalent circle. D = 3-D diameter of volume equivalent sphere. Subscript 'c' =
1266	with grain completion, as in (a), subscript 'nc' = without grain completion, as in (b)
1267	RMS ratio CIP/EBSDc (%) = ratio of RMS values found by CIP versus EBSDc. Mode
1268	ratio CIP/EBSDc (%) = ratio of modes found by CIP versus EBSDc.

1269 1270

Figure 14 1271

1272

1273 Relation of quartz domains and bulk sample strain.

Rf- ϕ type plot, calculated for general shear. Contours are for viscosity ratios $\mu/\mu 0$ of 1274 1275 0.01, 0.5, 1, 2, 3, 6 and 9, calculated for the linear viscous case. Dashed lines = constant 1276 shear strain, black rhomb = bulk sample strain, red stars = Y-subdomains, grey star = 1277 entire Y-domain. Values for thickness th0, thf and displacement d are taken from Table 1278 1. d/thf is the apparent shear strain (γ_a) reported for experiments. The effective shear 1279 strain $\Gamma = \gamma_a \cdot (\text{thf/th0})$, the true shear strain $\gamma = 2 \cdot \gamma_a \cdot \ln(k)/(k^2-1)$. For the example of 1280 w935, the ratio of principal stretches R = 12.9 and the trend of the major axis of the 1281 strain ellipse $\Theta' = 7.5^{\circ}$. The kinematic vorticity number Wk = 0.92. Aspect ratios of the 1282 Y-subdomains are 2.5 and 2.7 and the corresponding trend of the long axes (ϕ) is 22° 1283 and 21°.Strain ellipses for bulk sample and Y-subdomains are shown on right. Note that 1284 the behaviour of a power law inclusions in a power law matrix (\neq linear viscous case) 1285 fits this plot only if $\mu/\mu 0 = 1$, they do not fit the other contours - these are shown only 1286 to visualize the approximate trends of constant viscosity ratios. 1287

Table I Mechanical data for shearing experiments of BHQ

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Regime	Sample	T (°C)	Ϋ́ ^{min} (10 ⁻⁵ s ⁻¹)	Ϋ́ ^{max} (10 ⁻⁵ s ⁻¹)	Pc (GPa)	H2O (wt%)	т(MPa) peak/ vield	τ(MPa) flow	τ(MPa) last	Δσ(MPa) for piezo	45°displ. (mm)	th0 (mm)	thf (mm)	total γ	Yeffective
la	w940	850	I.46	2.50	I.50	-	413	238	238	476	3.60	1.27	0.87	4.I	2.8
Ib	w1092	850	0.50	2.43	1.55	-	647	314	338	628	5.05	1.45	0.88	5.7	3.5
2a	w1086	875	1.33	2.60	1.58	-	269	300	294	600	2.49	1.14	0.87	2.9	2.2
2b	w946	875	1.04	3.08	1.50	0.17	220	201	265	402	4.44	1.24	0.65	6.8	3.6
3a	w1010	915	1.53	2.13	1.55	0.17	-	115	119	230	2.65	1.27	1.03	2.6	2.1
3b	w935	915	1.53	2.82	1.50	0.17	-	103	133	206	3.87	1.27	0.69	5.6	3.0
3b	w965	915	1.30	2.91	1.55	0.17	125	107	121	214	5.07	1.25	0.75	6.8	4.1

Table 2 EBSD data acquisition

Ι	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
#	Sample	Voltage (kV)	Probe current (nA)	Pressure (Pa)	Aperture (µm)	WD (mm)	Magn.	Speed (Hz)	Time (h:m)	Reflectors / Bands	Mean MAD	Hough resol.	Binning	Step size (µm)	Map size (µm · µm)	Hit rate (%)
	undeformed material:															
	BHQ	20	5.3	35	120	9.48	200x	40.5	9:19	48 / 9	0.58	120	4x4	1.0	I 388 · 980	91.4
	scanned sites of experiments:															
la	w940	20	n.a.	2	120	14.5	250x	22.6	17:50	75 / 9	0.89	70	2x2	0.5	500 · 725	44. I
IЬ	w1092	20	n.a.	28	120	14.47	250x	22.8	18:45	75 / 10	0.90	110	2x2	0.5	550 · 700	92.8
IЬ	w1092-s30	20	n.a.	n.a.	n.a.	14.7	n.a.	11.2	10:48	75 / 9	0.81	70	2x2	0.5	241.5 · 452	77.3
2a	w1086	20	3.0	20	120	14.6	150x	22.6	5:54	75 / 9	0.90	70	2x2	0.5	600 · 200	72.0
2ь	w946	20	n.a.	28	120	13.49	300x	22.8	18:16	75 / 10	0.62	110	2x2	0.5	750 · 485	94.3
3a	w1010-s34	20	9.0	25	120	14.3	200x	40.3	3:02	75 / 9	0.78	70	4x4	1.0	430 · 980	82.1
3a	w1010-s36	20	9.0	25	120	14.3	200x	11.4	2:51	75 / 9	0.84	70	2x2	1.0	500 · 830	78.5
3Ь	w935	20	n.a.	28	120	13.35	200x	22.8	15:58	75 / 10	0.57	110	2x2	0.9988	1275.5 ·1025.8	93.1
Зb	w965-s40	20	6.0	25	120	15.0	150x	40.3	14:28	75 / 9	0.82	70	4x4	1.0	840 · 700	76.9
3Ь	w965-s45	20	3.0	20	120	148	250x	22.6	14:00	75 / 10	0.75	70	2x2	0.25	180 · 400	89.0

Table 3 Image processing and segmentation

1	2	3	4	5	6	7	8	9	10	11	12
#	Мар	Source	Cropped size (px)	Hit rate raw (%)	Hit rate deN (%)	Step size (µm)	Images used	Magn.	Pixel size (µm)	Procedure	Definition (°)
	BHQ	EBSD	I 388 · 980	91.4	94.5	1.0	8 misors	I	I	LGB interactive	n.a.
	bhq 2.5x	CIP	1388 · 1040	-	-	2.439	nopol	I	2.439	visual boundaries	n.a.
la	w940	EBSD	1000 · 500	86.5	95.6	0.50	8 misors	2	0.25	euoz-th25-itjitji-x-1y-1	1.2
١b	w1092	EBSD	1100 · 1400	76.0	89.8	0.50	8 misors	2	0.25	eoz-th50mjtji	2.5
١b	w1092-s30	EBSD	483 · 904	77.3	92.9	0.50	8 misors	2	0.25	eoz-th50mjitji	2.5
2a	w1086	EBSD	I 200 · 400	72.0	81.0	0.50	8 misors	2	0.25	eoz-th25-er5-mmmjitji	1.2
2b	w946	EBSD	I 500 · 970	94.3	98.6	0.50	8 misors	2	0.25	eoz-th50itji	2.5
3a	w1010-s34	EBSD	450 · 980	82. I	91.2	1.00	8 misors	2	0.50	eoz-th50i-tjitji	2.5
3a	w1010-s36	EBSD	500 · 830	78.5	90.0	1.00	8 misors	2	0.50	eoz-th50i-tjitji	2.5
3b	w935	EBSD	1277 ·1027	92.3	95.6	0.9988	8 misors	2	0.4994	eoz-th32i-e5dH-mjitji	1.5
3b	w965-s40	EBSD	840 · 700	76.9	88.6	1.00	8 misors	4	0.25	ueuoz-th50er5-ttjitji	2.5
3b	w965-s45	EBSD	720 · 1600	89.0	94.8	0.25	8 misors	I	0.25	eoz+m-th40-e5dG-mjitji	2.0

Table 4 Grain size measurements

	2	3	4	5	6	7	8
Мар	Number of grains	Mode v(D)	Standard deviation	μ+σ	μ + 2σ	μ + 3σ	RMS(d)
undeformed Black Hills Quartzite							
BHQ undef. EBSD	216	104.1200	5.3856	109.51	114.89	120.28	77.214
BHQ undef. CIP	1146	103.9600	13.847	117.81	131.65	145.50	89.964
(a) all maps							
la-w940	5914	5.2979	1.9958	7.2937	9.2895	11.29	4.1186
Ib-w1092	34115	4.0942	1.4439	5.5381	6.9820	8.43	3.4025
Ib-w1092-s30	9871	4.0790	I.4839	5.5629	7.0467	8.53	3.3308
2a-w1086	4377	5.7705	2.1522	7.9227	10.075	12.23	4.9579
2b-w946	19279	6.5284	2.9552	9.4836	12.439	15.39	4.5242
3a-w1010-s34	6441	9.0813	3.4139	12.495	15.909	19.32	7.9589
3a-w1010-s36	5792	9.2756	3.4170	12.693	16.110	19.53	8.3934
3b-w935	13354	14.5430	6.5298	21.073	27.603	34.13	9.3815
3b-w965-s40	10910	10.9640	4.3534	15.317	19.671	24.02	7.5841
3b-w965-s45	1860	10.0500	4.3044	14.354	18.659	22.96	6.6653
(b) dependence on grain kernel average misorientation (gKAM)							
Ib-w1092 high gKAM	19391	3.9213	1.3561	5.2774	6.6335	7.99	3.2697
Ib-w1092 low gKAM	14725	4.2960	1.5167	5.8127	7.3295	8.85	3.5699
2b-w946 high gKAM	I 3406	5.6628	2.4508	8.1136	10.564	13.02	4.0418
2b-w946 low gKAM	6396	7.7984	3.1009	10.899	14.000	17.10	5.4014
3b-w935 high gKAM	7898	13.0990	5.8398	18.939	24.779	30.62	8.6666
3b-w935 low gKAM	6220	16.2140	7.1071	23.321	30.428	37.54	10.267
(c) texture dependence							
Ib-w1092 all (center strip)	25553	4.2660	1.4415	5.7075	7.1490	8.59	3.4041
1b-w1092 B-domain	11647	4.6881	I.8084	6.4965	8.3048	10.11	3.4741
Ib-w1092 Y-domain	2289	4.1495	I.2075	5.3570	6.5646	7.77	3.2928
2b-w946 all	19280	6.5776	2.9357	9.5133	12.449	15.38	4.5241
2b-w946 B-domain	7425	7.2038	3.3556	10.559	13.915	17.27	4.7579
2b-w946 Y-domain	5634	6.5537	2.8060	9.3597	12.166	14.97	4.4397
3b-w965 all	10910	11.0140	4.3210	15.335	19.656	23.98	7.5828
3b-w965 B-domain	2203	11.5460	4.8128	16.359	21.172	25.98	7.8153
3b-w965 Y-domain	7385	11.0500	4.2983	15.348	19.647	23.94	7.6113
3b-w935 all	13359	14.6840	6.8181	21.502	28.320	35.14	9.3800
3b-w935 B-domain	2817	14.1530	6.8712	21.024	27.895	34.77	9.1574
3b-w935 Y-domain	7702	15.972	7.0684	22.413	29.482	36.55	9.5594

Figure I General shearing experiments on BHQ

Figure 2 Orientation images

Figure 3 Segmentation based on texture

Figure 4 Grain size maps

Figure 5 Recrystallized grain size for regime 1, 2, and 3

Figure 6 Details of c-axis texture

Figure 7 Recrystallized grain size as f(misorientation density)

Figure 8 Mapping grain size in texture domain

Figure 9 Recrystallized grain size as f(texture)

Figure 10 Recrystallized grain size as f(flow stress)

Figure 11 Comparison CIP versus EBSD

Figure 12 Spatial distribution and cluster size in Y-domain

Figure 13 Comparison of segmentations

Figure 14 Relation of quartz domains and bulk sample strain.

